deployment, linting and infra configuration
Some checks failed
CI/CD Pipeline / Code Quality & Linting (push) Has been cancelled
CI/CD Pipeline / Policy Validation (push) Has been cancelled
CI/CD Pipeline / Test Suite (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-coverage) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-extract) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-firm-connectors) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-forms) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-hmrc) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-ingestion) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-kg) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-normalize-map) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-ocr) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rag-indexer) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rag-retriever) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-reason) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rpa) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (ui-review) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-coverage) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-extract) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-kg) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-rag-retriever) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (ui-review) (push) Has been cancelled
CI/CD Pipeline / Generate SBOM (push) Has been cancelled
CI/CD Pipeline / Deploy to Staging (push) Has been cancelled
CI/CD Pipeline / Deploy to Production (push) Has been cancelled
CI/CD Pipeline / Notifications (push) Has been cancelled
Some checks failed
CI/CD Pipeline / Code Quality & Linting (push) Has been cancelled
CI/CD Pipeline / Policy Validation (push) Has been cancelled
CI/CD Pipeline / Test Suite (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-coverage) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-extract) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-firm-connectors) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-forms) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-hmrc) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-ingestion) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-kg) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-normalize-map) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-ocr) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rag-indexer) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rag-retriever) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-reason) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rpa) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (ui-review) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-coverage) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-extract) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-kg) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-rag-retriever) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (ui-review) (push) Has been cancelled
CI/CD Pipeline / Generate SBOM (push) Has been cancelled
CI/CD Pipeline / Deploy to Staging (push) Has been cancelled
CI/CD Pipeline / Deploy to Production (push) Has been cancelled
CI/CD Pipeline / Notifications (push) Has been cancelled
This commit is contained in:
555
libs/config.py
555
libs/config.py
@@ -1,555 +0,0 @@
|
||||
# ROLE
|
||||
|
||||
You are a **Senior Platform Engineer + Backend Lead** generating **production code** and **ops assets** for a microservice suite that powers an accounting Knowledge Graph + Vector RAG platform. Authentication/authorization are centralized at the **edge via Traefik + Authentik** (ForwardAuth). **Services are trust-bound** to Traefik and consume user/role claims via forwarded headers/JWT.
|
||||
|
||||
# MISSION
|
||||
|
||||
Produce fully working code for **all application services** (FastAPI + Python 3.12) with:
|
||||
|
||||
- Solid domain models, Pydantic v2 schemas, type hints, strict mypy, ruff lint.
|
||||
- Opentelemetry tracing, Prometheus metrics, structured logging.
|
||||
- Vault-backed secrets, MinIO S3 client, Qdrant client, Neo4j driver, Postgres (SQLAlchemy), Redis.
|
||||
- Eventing (Kafka or SQS/SNS behind an interface).
|
||||
- Deterministic data contracts, end-to-end tests, Dockerfiles, Compose, CI for Gitea.
|
||||
- Traefik labels + Authentik Outpost integration for every exposed route.
|
||||
- Zero PII in vectors (Qdrant), evidence-based lineage in KG, and bitemporal writes.
|
||||
|
||||
# GLOBAL CONSTRAINTS (APPLY TO ALL SERVICES)
|
||||
|
||||
- **Language & Runtime:** Python **3.12**.
|
||||
- **Frameworks:** FastAPI, Pydantic v2, SQLAlchemy 2, httpx, aiokafka or boto3 (pluggable), redis-py, opentelemetry-instrumentation-fastapi, prometheus-fastapi-instrumentator.
|
||||
- **Config:** `pydantic-settings` with `.env` overlay. Provide `Settings` class per service.
|
||||
- **Secrets:** HashiCorp **Vault** (AppRole/JWT). Use Vault Transit to **envelope-encrypt** sensitive fields before persistence (helpers provided in `lib/security.py`).
|
||||
- **Auth:** No OIDC in services. Add `TrustedProxyMiddleware`:
|
||||
|
||||
- Reject if request not from internal network (configurable CIDR).
|
||||
- Require headers set by Traefik+Authentik (`X-Authenticated-User`, `X-Authenticated-Email`, `X-Authenticated-Groups`, `Authorization: Bearer …`).
|
||||
- Parse groups → `roles` list on `request.state`.
|
||||
|
||||
- **Observability:**
|
||||
|
||||
- OpenTelemetry (traceparent propagation), span attrs (service, route, user, tenant).
|
||||
- Prometheus metrics endpoint `/metrics` protected by internal network check.
|
||||
- Structured JSON logs (timestamp, level, svc, trace_id, msg) via `structlog`.
|
||||
|
||||
- **Errors:** Global exception handler → RFC7807 Problem+JSON (`type`, `title`, `status`, `detail`, `instance`, `trace_id`).
|
||||
- **Testing:** `pytest`, `pytest-asyncio`, `hypothesis` (property tests for calculators), `coverage ≥ 90%` per service.
|
||||
- **Static:** `ruff`, `mypy --strict`, `bandit`, `safety`, `licensecheck`.
|
||||
- **Perf:** Each service exposes `/healthz`, `/readyz`, `/livez`; cold start < 500ms; p95 endpoint < 250ms (local).
|
||||
- **Containers:** Distroless or slim images; non-root user; read-only FS; `/tmp` mounted for OCR where needed.
|
||||
- **Docs:** OpenAPI JSON + ReDoc; MkDocs site with service READMEs.
|
||||
|
||||
# SHARED LIBS (GENERATE ONCE, REUSE)
|
||||
|
||||
Create `libs/` used by all services:
|
||||
|
||||
- `libs/config.py` – base `Settings`, env parsing, Vault client factory, MinIO client factory, Qdrant client factory, Neo4j driver factory, Redis factory, Kafka/SQS client factory.
|
||||
- `libs/security.py` – Vault Transit helpers (`encrypt_field`, `decrypt_field`), header parsing, internal-CIDR validator.
|
||||
- `libs/observability.py` – otel init, prometheus instrumentor, logging config.
|
||||
- `libs/events.py` – abstract `EventBus` with `publish(topic, payload: dict)`, `subscribe(topic, handler)`. Two impls: Kafka (`aiokafka`) and SQS/SNS (`boto3`).
|
||||
- `libs/schemas.py` – **canonical Pydantic models** shared across services (Document, Evidence, IncomeItem, etc.) mirroring the ontology schemas. Include JSONSchema exports.
|
||||
- `libs/storage.py` – S3/MinIO helpers (bucket ensure, put/get, presigned).
|
||||
- `libs/neo.py` – Neo4j session helpers, Cypher runner with retry, SHACL validator invoker (pySHACL on exported RDF).
|
||||
- `libs/rag.py` – Qdrant collections CRUD, hybrid search (dense+sparse), rerank wrapper, de-identification utilities (regex + NER; hash placeholders).
|
||||
- `libs/forms.py` – PDF AcroForm fill via `pdfrw` with overlay fallback via `reportlab`.
|
||||
- `libs/calibration.py` – `calibrated_confidence(raw_score, method="temperature_scaling", params=...)`.
|
||||
|
||||
# EVENT TOPICS (STANDARDIZE)
|
||||
|
||||
- `doc.ingested`, `doc.ocr_ready`, `doc.extracted`, `kg.upserted`, `rag.indexed`, `calc.schedule_ready`, `form.filled`, `hmrc.submitted`, `review.requested`, `review.completed`, `firm.sync.completed`
|
||||
|
||||
Each payload MUST include: `event_id (ulid)`, `occurred_at (iso)`, `actor`, `tenant_id`, `trace_id`, `schema_version`, and a `data` object (service-specific).
|
||||
|
||||
# TRUST HEADERS FROM TRAEFIK + AUTHENTIK (USE EXACT KEYS)
|
||||
|
||||
- `X-Authenticated-User` (string)
|
||||
- `X-Authenticated-Email` (string)
|
||||
- `X-Authenticated-Groups` (comma-separated)
|
||||
- `Authorization` (`Bearer <jwt>` from Authentik)
|
||||
Reject any request missing these (except `/healthz|/readyz|/livez|/metrics` from internal CIDR).
|
||||
|
||||
---
|
||||
|
||||
## SERVICES TO IMPLEMENT (CODE FOR EACH)
|
||||
|
||||
### 1) `svc-ingestion`
|
||||
|
||||
**Purpose:** Accept uploads or URLs, checksum, store to MinIO, emit `doc.ingested`.
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/ingest/upload` (multipart file, metadata: `tenant_id`, `kind`, `source`) → `{doc_id, s3_url, checksum}`
|
||||
- `POST /v1/ingest/url` (json: `{url, kind, tenant_id}`) → downloads to MinIO
|
||||
- `GET /v1/docs/{doc_id}` → metadata
|
||||
|
||||
**Logic:**
|
||||
|
||||
- Compute SHA256, dedupe by checksum; MinIO path `tenants/{tenant_id}/raw/{doc_id}.pdf`.
|
||||
- Store metadata in Postgres table `ingest_documents` (alembic migrations).
|
||||
- Publish `doc.ingested` with `{doc_id, bucket, key, pages?, mime}`.
|
||||
|
||||
**Env:** `S3_BUCKET_RAW`, `MINIO_*`, `DB_URL`.
|
||||
|
||||
**Traefik labels:** route `/ingest/*`.
|
||||
|
||||
---
|
||||
|
||||
### 2) `svc-rpa`
|
||||
|
||||
**Purpose:** Scheduled RPA pulls from firm/client portals via Playwright.
|
||||
|
||||
**Tasks:**
|
||||
|
||||
- Playwright login flows (credentials from Vault), 2FA via Authentik OAuth device or OTP secret in Vault.
|
||||
- Download statements/invoices; hand off to `svc-ingestion` via internal POST.
|
||||
- Prefect flows: `pull_portal_X()`, `pull_portal_Y()` with schedules.
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/rpa/run/{connector}` (manual trigger)
|
||||
- `GET /v1/rpa/status/{run_id}`
|
||||
|
||||
**Env:** `VAULT_ADDR`, `VAULT_ROLE_ID`, `VAULT_SECRET_ID`.
|
||||
|
||||
---
|
||||
|
||||
### 3) `svc-ocr`
|
||||
|
||||
**Purpose:** OCR & layout extraction.
|
||||
|
||||
**Pipeline:**
|
||||
|
||||
- Pull object from MinIO, detect rotation/de-skew (`opencv-python`), split pages (`pymupdf`), OCR (`pytesseract`) or bypass if text layer present (`pdfplumber`).
|
||||
- Output per-page text + **bbox** for lines/words.
|
||||
- Write JSON to MinIO `tenants/{tenant_id}/ocr/{doc_id}.json` and emit `doc.ocr_ready`.
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/ocr/{doc_id}` (idempotent trigger)
|
||||
- `GET /v1/ocr/{doc_id}` (fetch OCR JSON)
|
||||
|
||||
**Env:** `TESSERACT_LANGS`, `S3_BUCKET_EVIDENCE`.
|
||||
|
||||
---
|
||||
|
||||
### 4) `svc-extract`
|
||||
|
||||
**Purpose:** Classify docs and extract KV + tables into **schema-constrained JSON** (with bbox/page).
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/extract/{doc_id}` body: `{strategy: "llm|rules|hybrid"}`
|
||||
- `GET /v1/extract/{doc_id}` → structured JSON
|
||||
|
||||
**Implementation:**
|
||||
|
||||
- Use prompt files in `prompts/`: `doc_classify.txt`, `kv_extract.txt`, `table_extract.txt`.
|
||||
- **Validator loop**: run LLM → validate JSONSchema → retry with error messages up to N times.
|
||||
- Return Pydantic models from `libs/schemas.py`.
|
||||
- Emit `doc.extracted`.
|
||||
|
||||
**Env:** `LLM_ENGINE`, `TEMPERATURE`, `MAX_TOKENS`.
|
||||
|
||||
---
|
||||
|
||||
### 5) `svc-normalize-map`
|
||||
|
||||
**Purpose:** Normalize & map extracted data to KG.
|
||||
|
||||
**Logic:**
|
||||
|
||||
- Currency normalization (ECB or static fx table), dates, UK tax year/basis period inference.
|
||||
- Entity resolution (blocking + fuzzy).
|
||||
- Generate nodes/edges (+ `Evidence` with doc_id/page/bbox/text_hash).
|
||||
- Use `libs/neo.py` to write with **bitemporal** fields; run **SHACL** validator; on violation, queue `review.requested`.
|
||||
- Emit `kg.upserted`.
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/map/{doc_id}`
|
||||
- `GET /v1/map/{doc_id}/preview` (diff view, to be used by UI)
|
||||
|
||||
**Env:** `NEO4J_*`.
|
||||
|
||||
---
|
||||
|
||||
### 6) `svc-kg`
|
||||
|
||||
**Purpose:** Graph façade + RDF/SHACL utility.
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `GET /v1/kg/nodes/{label}/{id}`
|
||||
- `POST /v1/kg/cypher` (admin-gated inline query; must check `admin` role)
|
||||
- `POST /v1/kg/export/rdf` (returns RDF for SHACL)
|
||||
- `POST /v1/kg/validate` (run pySHACL against `schemas/shapes.ttl`)
|
||||
- `GET /v1/kg/lineage/{node_id}` (traverse `DERIVED_FROM` → Evidence)
|
||||
|
||||
**Env:** `NEO4J_*`.
|
||||
|
||||
---
|
||||
|
||||
### 7) `svc-rag-indexer`
|
||||
|
||||
**Purpose:** Build Qdrant indices (firm knowledge, legislation, best practices, glossary).
|
||||
|
||||
**Workflow:**
|
||||
|
||||
- Load sources (filesystem, URLs, Firm DMS via `svc-firm-connectors`).
|
||||
- **De-identify PII** (regex + NER), replace with placeholders; store mapping only in Postgres.
|
||||
- Chunk (layout-aware) per `retrieval/chunking.yaml`.
|
||||
- Compute **dense** embeddings (e.g., `bge-small-en-v1.5`) and **sparse** (Qdrant sparse).
|
||||
- Upsert to Qdrant with payload `{jurisdiction, tax_years[], topic_tags[], version, pii_free: true, doc_id/section_id/url}`.
|
||||
- Emit `rag.indexed`.
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/index/run`
|
||||
- `GET /v1/index/status/{run_id}`
|
||||
|
||||
**Env:** `QDRANT_URL`, `RAG_EMBEDDING_MODEL`, `RAG_RERANKER_MODEL`.
|
||||
|
||||
---
|
||||
|
||||
### 8) `svc-rag-retriever`
|
||||
|
||||
**Purpose:** Hybrid search + KG fusion with rerank and calibrated confidence.
|
||||
|
||||
**Endpoint:**
|
||||
|
||||
- `POST /v1/rag/search` `{query, tax_year?, jurisdiction?, k?}` →
|
||||
|
||||
```
|
||||
{
|
||||
"chunks": [...],
|
||||
"citations": [{doc_id|url, section_id?, page?, bbox?}],
|
||||
"kg_hints": [{rule_id, formula_id, node_ids[]}],
|
||||
"calibrated_confidence": 0.0-1.0
|
||||
}
|
||||
```
|
||||
|
||||
**Implementation:**
|
||||
|
||||
- Hybrid score: `alpha * dense + beta * sparse`; rerank top-K via cross-encoder; **KG fusion** (boost chunks citing Rules/Calculations relevant to schedule).
|
||||
- Use `libs/calibration.py` to expose calibrated confidence.
|
||||
|
||||
---
|
||||
|
||||
### 9) `svc-reason`
|
||||
|
||||
**Purpose:** Deterministic calculators + materializers (UK SA).
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/reason/compute_schedule` `{tax_year, taxpayer_id, schedule_id}`
|
||||
- `GET /v1/reason/explain/{schedule_id}` → rationale & lineage paths
|
||||
|
||||
**Implementation:**
|
||||
|
||||
- Pure functions for: employment, self-employment, property (FHL, 20% interest credit), dividends/interest, allowances, NIC (Class 2/4), HICBC, student loans (Plans 1/2/4/5, PGL).
|
||||
- **Deterministic order** as defined; rounding per `FormBox.rounding_rule`.
|
||||
- Use Cypher from `kg/reasoning/schedule_queries.cypher` to materialize box values; attach `DERIVED_FROM` evidence.
|
||||
|
||||
---
|
||||
|
||||
### 10) `svc-forms`
|
||||
|
||||
**Purpose:** Fill PDFs and assemble evidence bundles.
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/forms/fill` `{tax_year, taxpayer_id, form_id}` → returns PDF (binary)
|
||||
- `POST /v1/forms/evidence_pack` `{scope}` → ZIP + manifest + signed hashes (sha256)
|
||||
|
||||
**Implementation:**
|
||||
|
||||
- `pdfrw` for AcroForm; overlay with ReportLab if needed.
|
||||
- Manifest includes `doc_id/page/bbox/text_hash` for every numeric field.
|
||||
|
||||
---
|
||||
|
||||
### 11) `svc-hmrc`
|
||||
|
||||
**Purpose:** HMRC submitter (stub|sandbox|live).
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/hmrc/submit` `{tax_year, taxpayer_id, dry_run}` → `{status, submission_id?, errors[]}`
|
||||
- `GET /v1/hmrc/submissions/{id}`
|
||||
|
||||
**Implementation:**
|
||||
|
||||
- Rate limits, retries/backoff, signed audit log; environment toggle.
|
||||
|
||||
---
|
||||
|
||||
### 12) `svc-firm-connectors`
|
||||
|
||||
**Purpose:** Read-only connectors to Firm Databases (Practice Mgmt, DMS).
|
||||
|
||||
**Endpoints:**
|
||||
|
||||
- `POST /v1/firm/sync` `{since?}` → `{objects_synced, errors[]}`
|
||||
- `GET /v1/firm/objects` (paged)
|
||||
|
||||
**Implementation:**
|
||||
|
||||
- Data contracts in `config/firm_contracts/`; mappers → Secure Client Data Store (Postgres) with lineage columns (`source`, `source_id`, `synced_at`).
|
||||
|
||||
---
|
||||
|
||||
### 13) `ui-review` (outline only)
|
||||
|
||||
- Next.js (SSO handled by Traefik+Authentik), shows extracted fields + evidence snippets; POST overrides to `svc-extract`/`svc-normalize-map`.
|
||||
|
||||
---
|
||||
|
||||
## DATA CONTRACTS (ESSENTIAL EXAMPLES)
|
||||
|
||||
**Event: `doc.ingested`**
|
||||
|
||||
```json
|
||||
{
|
||||
"event_id": "01J...ULID",
|
||||
"occurred_at": "2025-09-13T08:00:00Z",
|
||||
"actor": "svc-ingestion",
|
||||
"tenant_id": "t_123",
|
||||
"trace_id": "abc-123",
|
||||
"schema_version": "1.0",
|
||||
"data": {
|
||||
"doc_id": "d_abc",
|
||||
"bucket": "raw",
|
||||
"key": "tenants/t_123/raw/d_abc.pdf",
|
||||
"checksum": "sha256:...",
|
||||
"kind": "bank_statement",
|
||||
"mime": "application/pdf",
|
||||
"pages": 12
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**RAG search response shape**
|
||||
|
||||
```json
|
||||
{
|
||||
"chunks": [
|
||||
{
|
||||
"id": "c1",
|
||||
"text": "...",
|
||||
"score": 0.78,
|
||||
"payload": {
|
||||
"jurisdiction": "UK",
|
||||
"tax_years": ["2024-25"],
|
||||
"topic_tags": ["FHL"],
|
||||
"pii_free": true
|
||||
}
|
||||
}
|
||||
],
|
||||
"citations": [
|
||||
{ "doc_id": "leg-ITA2007", "section_id": "s272A", "url": "https://..." }
|
||||
],
|
||||
"kg_hints": [
|
||||
{
|
||||
"rule_id": "UK.FHL.Qual",
|
||||
"formula_id": "FHL_Test_v1",
|
||||
"node_ids": ["n123", "n456"]
|
||||
}
|
||||
],
|
||||
"calibrated_confidence": 0.81
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## PERSISTENCE SCHEMAS (POSTGRES; ALEMBIC)
|
||||
|
||||
- `ingest_documents(id pk, tenant_id, doc_id, kind, checksum, bucket, key, mime, pages, created_at)`
|
||||
- `firm_objects(id pk, tenant_id, source, source_id, type, payload jsonb, synced_at)`
|
||||
- Qdrant PII mapping table (if absolutely needed): `pii_links(id pk, placeholder_hash, client_id, created_at)` — **encrypt with Vault Transit**; do NOT store raw values.
|
||||
|
||||
---
|
||||
|
||||
## TRAEFIK + AUTHENTIK (COMPOSE LABELS PER SERVICE)
|
||||
|
||||
For every service container in `infra/compose/docker-compose.local.yml`, add labels:
|
||||
|
||||
```
|
||||
- "traefik.enable=true"
|
||||
- "traefik.http.routers.svc-extract.rule=Host(`api.local`) && PathPrefix(`/extract`)"
|
||||
- "traefik.http.routers.svc-extract.entrypoints=websecure"
|
||||
- "traefik.http.routers.svc-extract.tls=true"
|
||||
- "traefik.http.routers.svc-extract.middlewares=authentik-forwardauth,rate-limit"
|
||||
- "traefik.http.services.svc-extract.loadbalancer.server.port=8000"
|
||||
```
|
||||
|
||||
Use the shared dynamic file `traefik-dynamic.yml` with `authentik-forwardauth` and `rate-limit` middlewares.
|
||||
|
||||
---
|
||||
|
||||
## OUTPUT FORMAT (STRICT)
|
||||
|
||||
Implement a **multi-file codebase** as fenced blocks, EXACTLY in this order:
|
||||
|
||||
```txt
|
||||
# FILE: libs/config.py
|
||||
# factories for Vault/MinIO/Qdrant/Neo4j/Redis/EventBus, Settings base
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: libs/security.py
|
||||
# Vault Transit helpers, header parsing, internal CIDR checks, middleware
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: libs/observability.py
|
||||
# otel init, prometheus, structlog
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: libs/events.py
|
||||
# EventBus abstraction with Kafka and SQS/SNS impls
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: libs/schemas.py
|
||||
# Shared Pydantic models mirroring ontology entities
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-ingestion/main.py
|
||||
# FastAPI app, endpoints, MinIO write, Postgres, publish doc.ingested
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-rpa/main.py
|
||||
# Playwright flows, Prefect tasks, triggers
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-ocr/main.py
|
||||
# OCR pipeline, endpoints
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-extract/main.py
|
||||
# Classifier + extractors with validator loop
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-normalize-map/main.py
|
||||
# normalization, entity resolution, KG mapping, SHACL validation call
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-kg/main.py
|
||||
# KG façade, RDF export, SHACL validate, lineage traversal
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-rag-indexer/main.py
|
||||
# chunk/de-id/embed/upsert to Qdrant
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-rag-retriever/main.py
|
||||
# hybrid retrieval + rerank + KG fusion
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-reason/main.py
|
||||
# deterministic calculators, schedule compute/explain
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-forms/main.py
|
||||
# PDF fill + evidence pack
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-hmrc/main.py
|
||||
# submit stub|sandbox|live with audit + retries
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: apps/svc-firm-connectors/main.py
|
||||
# connectors to practice mgmt & DMS, sync to Postgres
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: infra/compose/docker-compose.local.yml
|
||||
# Traefik, Authentik, Vault, MinIO, Qdrant, Neo4j, Postgres, Redis, Prom+Grafana, Loki, Unleash, all services
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: infra/compose/traefik.yml
|
||||
# static Traefik config
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: infra/compose/traefik-dynamic.yml
|
||||
# forwardAuth middleware + routers/services
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: .gitea/workflows/ci.yml
|
||||
# lint->test->build->scan->push->deploy
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: Makefile
|
||||
# bootstrap, run, test, lint, build, deploy, format, seed
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: tests/e2e/test_happy_path.py
|
||||
# end-to-end: ingest -> ocr -> extract -> map -> compute -> fill -> (stub) submit
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: tests/unit/test_calculators.py
|
||||
# boundary tests for UK SA logic (NIC, HICBC, PA taper, FHL)
|
||||
...
|
||||
```
|
||||
|
||||
```txt
|
||||
# FILE: README.md
|
||||
# how to run locally with docker-compose, Authentik setup, Traefik certs
|
||||
...
|
||||
```
|
||||
|
||||
## DEFINITION OF DONE
|
||||
|
||||
- `docker compose up` brings the full stack up; SSO via Authentik; routes secured via Traefik ForwardAuth.
|
||||
- Running `pytest` yields ≥ 90% coverage; `make e2e` passes the ingest→…→submit stub flow.
|
||||
- All services expose `/healthz|/readyz|/livez|/metrics`; OpenAPI at `/docs`.
|
||||
- No PII stored in Qdrant; vectors carry `pii_free=true`.
|
||||
- KG writes are SHACL-validated; violations produce `review.requested` events.
|
||||
- Evidence lineage is present for every numeric box value.
|
||||
- Gitea pipeline passes: lint, test, build, scan, push, deploy.
|
||||
|
||||
# START
|
||||
|
||||
Generate the full codebase and configs in the **exact file blocks and order** specified above.
|
||||
@@ -134,7 +134,7 @@ class Neo4jClient:
|
||||
result = await self.run_query(query, {"properties": properties}, database)
|
||||
node = result[0]["n"] if result else {}
|
||||
# Return node ID if available, otherwise return the full node
|
||||
return node.get("id", node)
|
||||
return node.get("id", node) # type: ignore
|
||||
|
||||
async def update_node(
|
||||
self,
|
||||
@@ -209,7 +209,7 @@ class Neo4jClient:
|
||||
database,
|
||||
)
|
||||
rel = result[0]["r"] if result else {}
|
||||
return rel.get("id", rel)
|
||||
return rel.get("id", rel) # type: ignore
|
||||
|
||||
# Original signature (using labels and IDs)
|
||||
rel_properties = properties or {}
|
||||
@@ -231,7 +231,7 @@ class Neo4jClient:
|
||||
)
|
||||
rel = result[0]["r"] if result else {}
|
||||
# Return relationship ID if available, otherwise return the full relationship
|
||||
return rel.get("id", rel)
|
||||
return rel.get("id", rel) # type: ignore
|
||||
|
||||
async def get_node_lineage(
|
||||
self, node_id: str, max_depth: int = 10, database: str = "neo4j"
|
||||
|
||||
0
libs/ocr/__init__.py
Normal file
0
libs/ocr/__init__.py
Normal file
507
libs/ocr/processor.py
Normal file
507
libs/ocr/processor.py
Normal file
@@ -0,0 +1,507 @@
|
||||
import base64
|
||||
import concurrent.futures
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
from PIL import Image, ImageFilter
|
||||
from PyPDF2 import PdfReader
|
||||
|
||||
|
||||
class OCRProcessor:
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "llama3.2-vision:11b",
|
||||
base_url: str = "http://localhost:11434/api/generate",
|
||||
max_workers: int = 1,
|
||||
provider: str = "ollama",
|
||||
openai_api_key: str | None = None,
|
||||
openai_base_url: str = "https://api.openai.com/v1/chat/completions",
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.base_url = base_url
|
||||
self.max_workers = max_workers
|
||||
self.provider = provider.lower()
|
||||
self.openai_api_key = openai_api_key or os.getenv("OPENAI_API_KEY")
|
||||
self.openai_base_url = openai_base_url
|
||||
|
||||
def _encode_image(self, image_path: str) -> str:
|
||||
"""Convert image to base64 string"""
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode("utf-8")
|
||||
|
||||
def _pdf_to_images(self, pdf_path: str) -> list[str]:
|
||||
"""
|
||||
Convert each page of a PDF to an image without PyMuPDF.
|
||||
Strategy: extract largest embedded image per page via PyPDF2.
|
||||
Saves each selected image as a temporary PNG and returns paths.
|
||||
|
||||
Note: Text-only pages with no embedded images will be skipped here.
|
||||
Use _pdf_extract_text as a fallback for such pages.
|
||||
"""
|
||||
image_paths: list[str] = []
|
||||
try:
|
||||
reader = PdfReader(pdf_path)
|
||||
for page_index, page in enumerate(reader.pages):
|
||||
try:
|
||||
resources = page.get("/Resources")
|
||||
if resources is None:
|
||||
continue
|
||||
xobject = resources.get("/XObject")
|
||||
if xobject is None:
|
||||
continue
|
||||
xobject = xobject.get_object()
|
||||
largest = None
|
||||
largest_area = -1
|
||||
for _, obj_ref in xobject.items():
|
||||
try:
|
||||
obj = obj_ref.get_object()
|
||||
if obj.get("/Subtype") != "/Image":
|
||||
continue
|
||||
width = int(obj.get("/Width", 0))
|
||||
height = int(obj.get("/Height", 0))
|
||||
area = width * height
|
||||
if area > largest_area:
|
||||
largest = obj
|
||||
largest_area = area
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
if largest is None:
|
||||
continue
|
||||
|
||||
data = largest.get_data()
|
||||
filt = largest.get("/Filter")
|
||||
out_path = f"{pdf_path}_page{page_index}.png"
|
||||
# If JPEG/JPX, write bytes directly; else convert via PIL
|
||||
if filt in ("/DCTDecode",):
|
||||
# JPEG
|
||||
out_path = f"{pdf_path}_page{page_index}.jpg"
|
||||
with open(out_path, "wb") as f:
|
||||
f.write(data)
|
||||
elif filt in ("/JPXDecode",):
|
||||
out_path = f"{pdf_path}_page{page_index}.jp2"
|
||||
with open(out_path, "wb") as f:
|
||||
f.write(data)
|
||||
else:
|
||||
mode = "RGB"
|
||||
colorspace = largest.get("/ColorSpace")
|
||||
if colorspace in ("/DeviceGray",):
|
||||
mode = "L"
|
||||
width = int(largest.get("/Width", 0))
|
||||
height = int(largest.get("/Height", 0))
|
||||
try:
|
||||
img = Image.frombytes(mode, (width, height), data)
|
||||
except Exception:
|
||||
# Best-effort decode via Pillow
|
||||
img = Image.open(io.BytesIO(data))
|
||||
img.save(out_path, format="PNG")
|
||||
|
||||
image_paths.append(out_path)
|
||||
except Exception:
|
||||
# Continue gracefully for problematic pages/objects
|
||||
continue
|
||||
return image_paths
|
||||
except Exception as e:
|
||||
raise ValueError(f"Could not extract images from PDF: {e}")
|
||||
|
||||
def _pdf_extract_text(self, pdf_path: str) -> list[str]:
|
||||
"""Extract text per page using pdfplumber if available, else PyPDF2."""
|
||||
texts: list[str] = []
|
||||
try:
|
||||
try:
|
||||
import pdfplumber
|
||||
|
||||
with pdfplumber.open(pdf_path) as pdf:
|
||||
for page in pdf.pages:
|
||||
texts.append(page.extract_text() or "")
|
||||
return texts
|
||||
except Exception:
|
||||
# Fallback to PyPDF2
|
||||
reader = PdfReader(pdf_path)
|
||||
for page in reader.pages: # type: ignore
|
||||
texts.append(page.extract_text() or "")
|
||||
return texts
|
||||
except Exception as e:
|
||||
raise ValueError(f"Could not extract text from PDF: {e}")
|
||||
|
||||
def _call_ollama_vision(self, prompt: str, image_base64: str) -> str:
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
"prompt": prompt,
|
||||
"stream": False,
|
||||
"images": [image_base64],
|
||||
}
|
||||
response = requests.post(self.base_url, json=payload)
|
||||
response.raise_for_status()
|
||||
return response.json().get("response", "") # type: ignore
|
||||
|
||||
def _call_openai_vision(self, prompt: str, image_base64: str) -> str:
|
||||
if not self.openai_api_key:
|
||||
raise ValueError("OPENAI_API_KEY not set")
|
||||
# Compose chat.completions payload for GPT-4o/mini vision
|
||||
payload = {
|
||||
"model": self.model_name or "gpt-4o-mini",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}",
|
||||
},
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
"temperature": 0,
|
||||
}
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.openai_api_key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
response = requests.post(self.openai_base_url, headers=headers, json=payload)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
try:
|
||||
return data["choices"][0]["message"]["content"] # type: ignore
|
||||
except Exception:
|
||||
return json.dumps(data)
|
||||
|
||||
def _preprocess_image(self, image_path: str, language: str = "en") -> str:
|
||||
"""
|
||||
Preprocess image before OCR using Pillow + NumPy:
|
||||
- Convert to grayscale
|
||||
- Histogram equalization (contrast)
|
||||
- Median denoise
|
||||
- Otsu threshold and invert
|
||||
"""
|
||||
try:
|
||||
with Image.open(image_path) as img:
|
||||
if img.mode in ("RGBA", "LA"):
|
||||
img = img.convert("RGB")
|
||||
gray = img.convert("L")
|
||||
|
||||
# Histogram equalization via cumulative distribution
|
||||
arr = np.asarray(gray)
|
||||
hist, _ = np.histogram(arr.flatten(), 256, [0, 256]) # type: ignore
|
||||
cdf = hist.cumsum()
|
||||
cdf_masked = np.ma.masked_equal(cdf, 0) # type: ignore
|
||||
cdf_min = cdf_masked.min() if cdf_masked.size else 0
|
||||
cdf_max = cdf_masked.max() if cdf_masked.size else 0
|
||||
if cdf_max == cdf_min:
|
||||
eq = arr
|
||||
else:
|
||||
cdf_scaled = (cdf_masked - cdf_min) * 255 / (cdf_max - cdf_min)
|
||||
lut = np.ma.filled(cdf_scaled, 0).astype("uint8")
|
||||
eq = lut[arr]
|
||||
|
||||
eq_img = Image.fromarray(eq, mode="L")
|
||||
# Median filter (3x3) to reduce noise
|
||||
eq_img = eq_img.filter(ImageFilter.MedianFilter(size=3))
|
||||
arr_eq = np.asarray(eq_img)
|
||||
|
||||
# Otsu threshold
|
||||
hist2, _ = np.histogram(arr_eq, 256, [0, 256]) # type: ignore
|
||||
total = arr_eq.size
|
||||
sum_total = (np.arange(256) * hist2).sum()
|
||||
sum_b = 0.0
|
||||
w_b = 0.0
|
||||
max_var = 0.0
|
||||
thr = 0
|
||||
for t in range(256):
|
||||
w_b += hist2[t]
|
||||
if w_b == 0:
|
||||
continue
|
||||
w_f = total - w_b
|
||||
if w_f == 0:
|
||||
break
|
||||
sum_b += t * hist2[t]
|
||||
m_b = sum_b / w_b
|
||||
m_f = (sum_total - sum_b) / w_f
|
||||
var_between = w_b * w_f * (m_b - m_f) ** 2
|
||||
if var_between > max_var:
|
||||
max_var = var_between
|
||||
thr = t
|
||||
|
||||
binary = (arr_eq > thr).astype(np.uint8) * 255
|
||||
# Invert: black text on white background
|
||||
binary = 255 - binary
|
||||
|
||||
out_img = Image.fromarray(binary, mode="L")
|
||||
preprocessed_path = f"{image_path}_preprocessed.jpg"
|
||||
out_img.save(preprocessed_path, format="JPEG", quality=95)
|
||||
return preprocessed_path
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to preprocess image {image_path}: {e}")
|
||||
|
||||
def process_image(
|
||||
self,
|
||||
image_path: str,
|
||||
format_type: str = "markdown",
|
||||
preprocess: bool = True,
|
||||
custom_prompt: str | None = None,
|
||||
language: str = "en",
|
||||
) -> str:
|
||||
"""
|
||||
Process an image (or PDF) and extract text in the specified format
|
||||
|
||||
Args:
|
||||
image_path: Path to the image file or PDF file
|
||||
format_type: One of ["markdown", "text", "json", "structured", "key_value","custom"]
|
||||
preprocess: Whether to apply image preprocessing
|
||||
custom_prompt: If provided, this prompt overrides the default based on format_type
|
||||
language: Language code to apply language specific OCR preprocessing
|
||||
"""
|
||||
try:
|
||||
# If the input is a PDF, process all pages
|
||||
if image_path.lower().endswith(".pdf"):
|
||||
image_pages = self._pdf_to_images(image_path)
|
||||
responses: list[str] = []
|
||||
if image_pages:
|
||||
for idx, page_file in enumerate(image_pages):
|
||||
# Process each page with preprocessing if enabled
|
||||
if preprocess:
|
||||
preprocessed_path = self._preprocess_image(
|
||||
page_file, language
|
||||
)
|
||||
else:
|
||||
preprocessed_path = page_file
|
||||
|
||||
image_base64 = self._encode_image(preprocessed_path)
|
||||
|
||||
if custom_prompt and custom_prompt.strip():
|
||||
prompt = custom_prompt
|
||||
else:
|
||||
prompts = {
|
||||
"markdown": f"""Extract all text content from this image in {language} **exactly as it appears**, without modification, summarization, or omission.
|
||||
Format the output in markdown:
|
||||
- Use headers (#, ##, ###) **only if they appear in the image**
|
||||
- Preserve original lists (-, *, numbered lists) as they are
|
||||
- Maintain all text formatting (bold, italics, underlines) exactly as seen
|
||||
- **Do not add, interpret, or restructure any content**
|
||||
""",
|
||||
"text": f"""Extract all visible text from this image in {language} **without any changes**.
|
||||
- **Do not summarize, paraphrase, or infer missing text.**
|
||||
- Retain all spacing, punctuation, and formatting exactly as in the image.
|
||||
- If text is unclear or partially visible, extract as much as possible without guessing.
|
||||
- **Include all text, even if it seems irrelevant or repeated.**
|
||||
""",
|
||||
"json": f"""Extract all text from this image in {language} and format it as JSON, **strictly preserving** the structure.
|
||||
- **Do not summarize, add, or modify any text.**
|
||||
- Maintain hierarchical sections and subsections as they appear.
|
||||
- Use keys that reflect the document's actual structure (e.g., "title", "body", "footer").
|
||||
- Include all text, even if fragmented, blurry, or unclear.
|
||||
""",
|
||||
"structured": f"""Extract all text from this image in {language}, **ensuring complete structural accuracy**:
|
||||
- Identify and format tables **without altering content**.
|
||||
- Preserve list structures (bulleted, numbered) **exactly as shown**.
|
||||
- Maintain all section headings, indents, and alignments.
|
||||
- **Do not add, infer, or restructure the content in any way.**
|
||||
""",
|
||||
"key_value": f"""Extract all key-value pairs from this image in {language} **exactly as they appear**:
|
||||
- Identify and extract labels and their corresponding values without modification.
|
||||
- Maintain the exact wording, punctuation, and order.
|
||||
- Format each pair as 'key: value' **only if clearly structured that way in the image**.
|
||||
- **Do not infer missing values or add any extra text.**
|
||||
""",
|
||||
"table": f"""Extract all tabular data from this image in {language} **exactly as it appears**, without modification, summarization, or omission.
|
||||
- **Preserve the table structure** (rows, columns, headers) as closely as possible.
|
||||
- **Do not add missing values or infer content**—if a cell is empty, leave it empty.
|
||||
- Maintain all numerical, textual, and special character formatting.
|
||||
- If the table contains merged cells, indicate them clearly without altering their meaning.
|
||||
- Output the table in a structured format such as Markdown, CSV, or JSON, based on the intended use.
|
||||
""",
|
||||
}
|
||||
prompt = prompts.get(format_type, prompts["text"])
|
||||
|
||||
# Route to chosen provider
|
||||
if self.provider == "openai":
|
||||
res = self._call_openai_vision(prompt, image_base64)
|
||||
else:
|
||||
res = self._call_ollama_vision(prompt, image_base64)
|
||||
|
||||
responses.append(f"Page {idx + 1}:\n{res}")
|
||||
|
||||
# Clean up temporary files
|
||||
if preprocess and preprocessed_path.endswith(
|
||||
"_preprocessed.jpg"
|
||||
):
|
||||
try:
|
||||
os.remove(preprocessed_path)
|
||||
except OSError:
|
||||
pass
|
||||
if page_file.endswith((".png", ".jpg", ".jp2")):
|
||||
try:
|
||||
os.remove(page_file)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
final_result = "\n".join(responses)
|
||||
if format_type == "json":
|
||||
try:
|
||||
json_data = json.loads(final_result)
|
||||
return json.dumps(json_data, indent=2)
|
||||
except json.JSONDecodeError:
|
||||
return final_result
|
||||
return final_result
|
||||
else:
|
||||
# Fallback: no images found; extract raw text per page
|
||||
text_pages = self._pdf_extract_text(image_path)
|
||||
combined = []
|
||||
for i, t in enumerate(text_pages):
|
||||
combined.append(f"Page {i + 1}:\n{t}")
|
||||
return "\n".join(combined)
|
||||
|
||||
# Process non-PDF images as before.
|
||||
if preprocess:
|
||||
image_path = self._preprocess_image(image_path, language)
|
||||
|
||||
image_base64 = self._encode_image(image_path)
|
||||
|
||||
# Clean up temporary files
|
||||
if image_path.endswith(("_preprocessed.jpg", "_temp.jpg")):
|
||||
os.remove(image_path)
|
||||
|
||||
if custom_prompt and custom_prompt.strip():
|
||||
prompt = custom_prompt
|
||||
print("Using custom prompt:", prompt)
|
||||
else:
|
||||
prompts = {
|
||||
"markdown": f"""Extract all text content from this image in {language} **exactly as it appears**, without modification, summarization, or omission.
|
||||
Format the output in markdown:
|
||||
- Use headers (#, ##, ###) **only if they appear in the image**
|
||||
- Preserve original lists (-, *, numbered lists) as they are
|
||||
- Maintain all text formatting (bold, italics, underlines) exactly as seen
|
||||
- **Do not add, interpret, or restructure any content**
|
||||
""",
|
||||
"text": f"""Extract all visible text from this image in {language} **without any changes**.
|
||||
- **Do not summarize, paraphrase, or infer missing text.**
|
||||
- Retain all spacing, punctuation, and formatting exactly as in the image.
|
||||
- If text is unclear or partially visible, extract as much as possible without guessing.
|
||||
- **Include all text, even if it seems irrelevant or repeated.**
|
||||
""",
|
||||
"json": f"""Extract all text from this image in {language} and format it as JSON, **strictly preserving** the structure.
|
||||
- **Do not summarize, add, or modify any text.**
|
||||
- Maintain hierarchical sections and subsections as they appear.
|
||||
- Use keys that reflect the document's actual structure (e.g., "title", "body", "footer").
|
||||
- Include all text, even if fragmented, blurry, or unclear.
|
||||
""",
|
||||
"structured": f"""Extract all text from this image in {language}, **ensuring complete structural accuracy**:
|
||||
- Identify and format tables **without altering content**.
|
||||
- Preserve list structures (bulleted, numbered) **exactly as shown**.
|
||||
- Maintain all section headings, indents, and alignments.
|
||||
- **Do not add, infer, or restructure the content in any way.**
|
||||
""",
|
||||
"key_value": f"""Extract all key-value pairs from this image in {language} **exactly as they appear**:
|
||||
- Identify and extract labels and their corresponding values without modification.
|
||||
- Maintain the exact wording, punctuation, and order.
|
||||
- Format each pair as 'key: value' **only if clearly structured that way in the image**.
|
||||
- **Do not infer missing values or add any extra text.**
|
||||
""",
|
||||
"table": f"""Extract all tabular data from this image in {language} **exactly as it appears**, without modification, summarization, or omission.
|
||||
- **Preserve the table structure** (rows, columns, headers) as closely as possible.
|
||||
- **Do not add missing values or infer content**—if a cell is empty, leave it empty.
|
||||
- Maintain all numerical, textual, and special character formatting.
|
||||
- If the table contains merged cells, indicate them clearly without altering their meaning.
|
||||
- Output the table in a structured format such as Markdown, CSV, or JSON, based on the intended use.
|
||||
""",
|
||||
}
|
||||
prompt = prompts.get(format_type, prompts["text"])
|
||||
print("Using default prompt:", prompt) # Debug print
|
||||
|
||||
# Call chosen provider with single image
|
||||
if self.provider == "openai":
|
||||
result = self._call_openai_vision(prompt, image_base64)
|
||||
else:
|
||||
result = self._call_ollama_vision(prompt, image_base64)
|
||||
|
||||
if format_type == "json":
|
||||
try:
|
||||
json_data = json.loads(result)
|
||||
return json.dumps(json_data, indent=2)
|
||||
except json.JSONDecodeError:
|
||||
return str(result)
|
||||
|
||||
return str(result)
|
||||
except Exception as e:
|
||||
return f"Error processing image: {str(e)}"
|
||||
|
||||
def process_batch(
|
||||
self,
|
||||
input_path: str | list[str],
|
||||
format_type: str = "markdown",
|
||||
recursive: bool = False,
|
||||
preprocess: bool = True,
|
||||
custom_prompt: str | None = None,
|
||||
language: str = "en",
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Process multiple images in batch
|
||||
|
||||
Args:
|
||||
input_path: Path to directory or list of image paths
|
||||
format_type: Output format type
|
||||
recursive: Whether to search directories recursively
|
||||
preprocess: Whether to apply image preprocessing
|
||||
custom_prompt: If provided, this prompt overrides the default for each image
|
||||
language: Language code to apply language specific OCR preprocessing
|
||||
|
||||
Returns:
|
||||
Dictionary with results and statistics
|
||||
"""
|
||||
# Collect all image paths
|
||||
image_paths: list[str | Path] = []
|
||||
if isinstance(input_path, str):
|
||||
base_path = Path(input_path)
|
||||
if base_path.is_dir():
|
||||
pattern = "**/*" if recursive else "*"
|
||||
for ext in [".png", ".jpg", ".jpeg", ".pdf", ".tiff"]:
|
||||
image_paths.extend(base_path.glob(f"{pattern}{ext}"))
|
||||
else:
|
||||
image_paths = [base_path]
|
||||
else:
|
||||
image_paths = [Path(p) for p in input_path]
|
||||
|
||||
results = {}
|
||||
errors = {}
|
||||
|
||||
# Process images in parallel
|
||||
with concurrent.futures.ThreadPoolExecutor(
|
||||
max_workers=self.max_workers
|
||||
) as executor:
|
||||
future_to_path = {
|
||||
executor.submit(
|
||||
self.process_image,
|
||||
str(path),
|
||||
format_type,
|
||||
preprocess,
|
||||
custom_prompt,
|
||||
language,
|
||||
): path
|
||||
for path in image_paths
|
||||
}
|
||||
|
||||
for future in concurrent.futures.as_completed(future_to_path):
|
||||
path = future_to_path[future]
|
||||
try:
|
||||
results[str(path)] = future.result()
|
||||
except Exception as e:
|
||||
errors[str(path)] = str(e)
|
||||
# pbar.update(1)
|
||||
|
||||
return {
|
||||
"results": results,
|
||||
"errors": errors,
|
||||
"statistics": {
|
||||
"total": len(image_paths),
|
||||
"successful": len(results),
|
||||
"failed": len(errors),
|
||||
},
|
||||
}
|
||||
@@ -1,13 +1,13 @@
|
||||
# Core framework dependencies (Required by all services)
|
||||
fastapi>=0.118.0
|
||||
fastapi>=0.119.0
|
||||
uvicorn[standard]>=0.37.0
|
||||
pydantic>=2.11.9
|
||||
pydantic>=2.12.0
|
||||
pydantic-settings>=2.11.0
|
||||
|
||||
# Database drivers (lightweight)
|
||||
sqlalchemy>=2.0.43
|
||||
sqlalchemy>=2.0.44
|
||||
asyncpg>=0.30.0
|
||||
psycopg2-binary>=2.9.10
|
||||
psycopg2-binary>=2.9.11
|
||||
neo4j>=6.0.2
|
||||
redis[hiredis]>=6.4.0
|
||||
|
||||
|
||||
@@ -3,3 +3,4 @@ pdfrw>=0.4
|
||||
reportlab>=4.4.4
|
||||
PyPDF2>=3.0.1
|
||||
pdfplumber>=0.11.7
|
||||
opencv-python
|
||||
|
||||
@@ -79,7 +79,7 @@ class StorageClient:
|
||||
"""Download object from bucket"""
|
||||
try:
|
||||
response = self.client.get_object(bucket_name, object_name)
|
||||
data = response.read()
|
||||
data: bytes = response.read()
|
||||
response.close()
|
||||
response.release_conn()
|
||||
|
||||
@@ -89,7 +89,7 @@ class StorageClient:
|
||||
object=object_name,
|
||||
size=len(data),
|
||||
)
|
||||
return data # type: ignore
|
||||
return data
|
||||
|
||||
except S3Error as e:
|
||||
logger.error(
|
||||
|
||||
Reference in New Issue
Block a user