deployment, linting and infra configuration
Some checks failed
CI/CD Pipeline / Code Quality & Linting (push) Has been cancelled
CI/CD Pipeline / Policy Validation (push) Has been cancelled
CI/CD Pipeline / Test Suite (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-coverage) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-extract) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-firm-connectors) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-forms) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-hmrc) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-ingestion) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-kg) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-normalize-map) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-ocr) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rag-indexer) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rag-retriever) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-reason) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rpa) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (ui-review) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-coverage) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-extract) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-kg) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-rag-retriever) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (ui-review) (push) Has been cancelled
CI/CD Pipeline / Generate SBOM (push) Has been cancelled
CI/CD Pipeline / Deploy to Staging (push) Has been cancelled
CI/CD Pipeline / Deploy to Production (push) Has been cancelled
CI/CD Pipeline / Notifications (push) Has been cancelled
Some checks failed
CI/CD Pipeline / Code Quality & Linting (push) Has been cancelled
CI/CD Pipeline / Policy Validation (push) Has been cancelled
CI/CD Pipeline / Test Suite (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-coverage) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-extract) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-firm-connectors) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-forms) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-hmrc) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-ingestion) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-kg) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-normalize-map) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-ocr) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rag-indexer) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rag-retriever) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-reason) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (svc-rpa) (push) Has been cancelled
CI/CD Pipeline / Build Docker Images (ui-review) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-coverage) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-extract) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-kg) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (svc-rag-retriever) (push) Has been cancelled
CI/CD Pipeline / Security Scanning (ui-review) (push) Has been cancelled
CI/CD Pipeline / Generate SBOM (push) Has been cancelled
CI/CD Pipeline / Deploy to Staging (push) Has been cancelled
CI/CD Pipeline / Deploy to Production (push) Has been cancelled
CI/CD Pipeline / Notifications (push) Has been cancelled
This commit is contained in:
507
libs/ocr/processor.py
Normal file
507
libs/ocr/processor.py
Normal file
@@ -0,0 +1,507 @@
|
||||
import base64
|
||||
import concurrent.futures
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
from PIL import Image, ImageFilter
|
||||
from PyPDF2 import PdfReader
|
||||
|
||||
|
||||
class OCRProcessor:
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "llama3.2-vision:11b",
|
||||
base_url: str = "http://localhost:11434/api/generate",
|
||||
max_workers: int = 1,
|
||||
provider: str = "ollama",
|
||||
openai_api_key: str | None = None,
|
||||
openai_base_url: str = "https://api.openai.com/v1/chat/completions",
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.base_url = base_url
|
||||
self.max_workers = max_workers
|
||||
self.provider = provider.lower()
|
||||
self.openai_api_key = openai_api_key or os.getenv("OPENAI_API_KEY")
|
||||
self.openai_base_url = openai_base_url
|
||||
|
||||
def _encode_image(self, image_path: str) -> str:
|
||||
"""Convert image to base64 string"""
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode("utf-8")
|
||||
|
||||
def _pdf_to_images(self, pdf_path: str) -> list[str]:
|
||||
"""
|
||||
Convert each page of a PDF to an image without PyMuPDF.
|
||||
Strategy: extract largest embedded image per page via PyPDF2.
|
||||
Saves each selected image as a temporary PNG and returns paths.
|
||||
|
||||
Note: Text-only pages with no embedded images will be skipped here.
|
||||
Use _pdf_extract_text as a fallback for such pages.
|
||||
"""
|
||||
image_paths: list[str] = []
|
||||
try:
|
||||
reader = PdfReader(pdf_path)
|
||||
for page_index, page in enumerate(reader.pages):
|
||||
try:
|
||||
resources = page.get("/Resources")
|
||||
if resources is None:
|
||||
continue
|
||||
xobject = resources.get("/XObject")
|
||||
if xobject is None:
|
||||
continue
|
||||
xobject = xobject.get_object()
|
||||
largest = None
|
||||
largest_area = -1
|
||||
for _, obj_ref in xobject.items():
|
||||
try:
|
||||
obj = obj_ref.get_object()
|
||||
if obj.get("/Subtype") != "/Image":
|
||||
continue
|
||||
width = int(obj.get("/Width", 0))
|
||||
height = int(obj.get("/Height", 0))
|
||||
area = width * height
|
||||
if area > largest_area:
|
||||
largest = obj
|
||||
largest_area = area
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
if largest is None:
|
||||
continue
|
||||
|
||||
data = largest.get_data()
|
||||
filt = largest.get("/Filter")
|
||||
out_path = f"{pdf_path}_page{page_index}.png"
|
||||
# If JPEG/JPX, write bytes directly; else convert via PIL
|
||||
if filt in ("/DCTDecode",):
|
||||
# JPEG
|
||||
out_path = f"{pdf_path}_page{page_index}.jpg"
|
||||
with open(out_path, "wb") as f:
|
||||
f.write(data)
|
||||
elif filt in ("/JPXDecode",):
|
||||
out_path = f"{pdf_path}_page{page_index}.jp2"
|
||||
with open(out_path, "wb") as f:
|
||||
f.write(data)
|
||||
else:
|
||||
mode = "RGB"
|
||||
colorspace = largest.get("/ColorSpace")
|
||||
if colorspace in ("/DeviceGray",):
|
||||
mode = "L"
|
||||
width = int(largest.get("/Width", 0))
|
||||
height = int(largest.get("/Height", 0))
|
||||
try:
|
||||
img = Image.frombytes(mode, (width, height), data)
|
||||
except Exception:
|
||||
# Best-effort decode via Pillow
|
||||
img = Image.open(io.BytesIO(data))
|
||||
img.save(out_path, format="PNG")
|
||||
|
||||
image_paths.append(out_path)
|
||||
except Exception:
|
||||
# Continue gracefully for problematic pages/objects
|
||||
continue
|
||||
return image_paths
|
||||
except Exception as e:
|
||||
raise ValueError(f"Could not extract images from PDF: {e}")
|
||||
|
||||
def _pdf_extract_text(self, pdf_path: str) -> list[str]:
|
||||
"""Extract text per page using pdfplumber if available, else PyPDF2."""
|
||||
texts: list[str] = []
|
||||
try:
|
||||
try:
|
||||
import pdfplumber
|
||||
|
||||
with pdfplumber.open(pdf_path) as pdf:
|
||||
for page in pdf.pages:
|
||||
texts.append(page.extract_text() or "")
|
||||
return texts
|
||||
except Exception:
|
||||
# Fallback to PyPDF2
|
||||
reader = PdfReader(pdf_path)
|
||||
for page in reader.pages: # type: ignore
|
||||
texts.append(page.extract_text() or "")
|
||||
return texts
|
||||
except Exception as e:
|
||||
raise ValueError(f"Could not extract text from PDF: {e}")
|
||||
|
||||
def _call_ollama_vision(self, prompt: str, image_base64: str) -> str:
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
"prompt": prompt,
|
||||
"stream": False,
|
||||
"images": [image_base64],
|
||||
}
|
||||
response = requests.post(self.base_url, json=payload)
|
||||
response.raise_for_status()
|
||||
return response.json().get("response", "") # type: ignore
|
||||
|
||||
def _call_openai_vision(self, prompt: str, image_base64: str) -> str:
|
||||
if not self.openai_api_key:
|
||||
raise ValueError("OPENAI_API_KEY not set")
|
||||
# Compose chat.completions payload for GPT-4o/mini vision
|
||||
payload = {
|
||||
"model": self.model_name or "gpt-4o-mini",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}",
|
||||
},
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
"temperature": 0,
|
||||
}
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.openai_api_key}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
response = requests.post(self.openai_base_url, headers=headers, json=payload)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
try:
|
||||
return data["choices"][0]["message"]["content"] # type: ignore
|
||||
except Exception:
|
||||
return json.dumps(data)
|
||||
|
||||
def _preprocess_image(self, image_path: str, language: str = "en") -> str:
|
||||
"""
|
||||
Preprocess image before OCR using Pillow + NumPy:
|
||||
- Convert to grayscale
|
||||
- Histogram equalization (contrast)
|
||||
- Median denoise
|
||||
- Otsu threshold and invert
|
||||
"""
|
||||
try:
|
||||
with Image.open(image_path) as img:
|
||||
if img.mode in ("RGBA", "LA"):
|
||||
img = img.convert("RGB")
|
||||
gray = img.convert("L")
|
||||
|
||||
# Histogram equalization via cumulative distribution
|
||||
arr = np.asarray(gray)
|
||||
hist, _ = np.histogram(arr.flatten(), 256, [0, 256]) # type: ignore
|
||||
cdf = hist.cumsum()
|
||||
cdf_masked = np.ma.masked_equal(cdf, 0) # type: ignore
|
||||
cdf_min = cdf_masked.min() if cdf_masked.size else 0
|
||||
cdf_max = cdf_masked.max() if cdf_masked.size else 0
|
||||
if cdf_max == cdf_min:
|
||||
eq = arr
|
||||
else:
|
||||
cdf_scaled = (cdf_masked - cdf_min) * 255 / (cdf_max - cdf_min)
|
||||
lut = np.ma.filled(cdf_scaled, 0).astype("uint8")
|
||||
eq = lut[arr]
|
||||
|
||||
eq_img = Image.fromarray(eq, mode="L")
|
||||
# Median filter (3x3) to reduce noise
|
||||
eq_img = eq_img.filter(ImageFilter.MedianFilter(size=3))
|
||||
arr_eq = np.asarray(eq_img)
|
||||
|
||||
# Otsu threshold
|
||||
hist2, _ = np.histogram(arr_eq, 256, [0, 256]) # type: ignore
|
||||
total = arr_eq.size
|
||||
sum_total = (np.arange(256) * hist2).sum()
|
||||
sum_b = 0.0
|
||||
w_b = 0.0
|
||||
max_var = 0.0
|
||||
thr = 0
|
||||
for t in range(256):
|
||||
w_b += hist2[t]
|
||||
if w_b == 0:
|
||||
continue
|
||||
w_f = total - w_b
|
||||
if w_f == 0:
|
||||
break
|
||||
sum_b += t * hist2[t]
|
||||
m_b = sum_b / w_b
|
||||
m_f = (sum_total - sum_b) / w_f
|
||||
var_between = w_b * w_f * (m_b - m_f) ** 2
|
||||
if var_between > max_var:
|
||||
max_var = var_between
|
||||
thr = t
|
||||
|
||||
binary = (arr_eq > thr).astype(np.uint8) * 255
|
||||
# Invert: black text on white background
|
||||
binary = 255 - binary
|
||||
|
||||
out_img = Image.fromarray(binary, mode="L")
|
||||
preprocessed_path = f"{image_path}_preprocessed.jpg"
|
||||
out_img.save(preprocessed_path, format="JPEG", quality=95)
|
||||
return preprocessed_path
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to preprocess image {image_path}: {e}")
|
||||
|
||||
def process_image(
|
||||
self,
|
||||
image_path: str,
|
||||
format_type: str = "markdown",
|
||||
preprocess: bool = True,
|
||||
custom_prompt: str | None = None,
|
||||
language: str = "en",
|
||||
) -> str:
|
||||
"""
|
||||
Process an image (or PDF) and extract text in the specified format
|
||||
|
||||
Args:
|
||||
image_path: Path to the image file or PDF file
|
||||
format_type: One of ["markdown", "text", "json", "structured", "key_value","custom"]
|
||||
preprocess: Whether to apply image preprocessing
|
||||
custom_prompt: If provided, this prompt overrides the default based on format_type
|
||||
language: Language code to apply language specific OCR preprocessing
|
||||
"""
|
||||
try:
|
||||
# If the input is a PDF, process all pages
|
||||
if image_path.lower().endswith(".pdf"):
|
||||
image_pages = self._pdf_to_images(image_path)
|
||||
responses: list[str] = []
|
||||
if image_pages:
|
||||
for idx, page_file in enumerate(image_pages):
|
||||
# Process each page with preprocessing if enabled
|
||||
if preprocess:
|
||||
preprocessed_path = self._preprocess_image(
|
||||
page_file, language
|
||||
)
|
||||
else:
|
||||
preprocessed_path = page_file
|
||||
|
||||
image_base64 = self._encode_image(preprocessed_path)
|
||||
|
||||
if custom_prompt and custom_prompt.strip():
|
||||
prompt = custom_prompt
|
||||
else:
|
||||
prompts = {
|
||||
"markdown": f"""Extract all text content from this image in {language} **exactly as it appears**, without modification, summarization, or omission.
|
||||
Format the output in markdown:
|
||||
- Use headers (#, ##, ###) **only if they appear in the image**
|
||||
- Preserve original lists (-, *, numbered lists) as they are
|
||||
- Maintain all text formatting (bold, italics, underlines) exactly as seen
|
||||
- **Do not add, interpret, or restructure any content**
|
||||
""",
|
||||
"text": f"""Extract all visible text from this image in {language} **without any changes**.
|
||||
- **Do not summarize, paraphrase, or infer missing text.**
|
||||
- Retain all spacing, punctuation, and formatting exactly as in the image.
|
||||
- If text is unclear or partially visible, extract as much as possible without guessing.
|
||||
- **Include all text, even if it seems irrelevant or repeated.**
|
||||
""",
|
||||
"json": f"""Extract all text from this image in {language} and format it as JSON, **strictly preserving** the structure.
|
||||
- **Do not summarize, add, or modify any text.**
|
||||
- Maintain hierarchical sections and subsections as they appear.
|
||||
- Use keys that reflect the document's actual structure (e.g., "title", "body", "footer").
|
||||
- Include all text, even if fragmented, blurry, or unclear.
|
||||
""",
|
||||
"structured": f"""Extract all text from this image in {language}, **ensuring complete structural accuracy**:
|
||||
- Identify and format tables **without altering content**.
|
||||
- Preserve list structures (bulleted, numbered) **exactly as shown**.
|
||||
- Maintain all section headings, indents, and alignments.
|
||||
- **Do not add, infer, or restructure the content in any way.**
|
||||
""",
|
||||
"key_value": f"""Extract all key-value pairs from this image in {language} **exactly as they appear**:
|
||||
- Identify and extract labels and their corresponding values without modification.
|
||||
- Maintain the exact wording, punctuation, and order.
|
||||
- Format each pair as 'key: value' **only if clearly structured that way in the image**.
|
||||
- **Do not infer missing values or add any extra text.**
|
||||
""",
|
||||
"table": f"""Extract all tabular data from this image in {language} **exactly as it appears**, without modification, summarization, or omission.
|
||||
- **Preserve the table structure** (rows, columns, headers) as closely as possible.
|
||||
- **Do not add missing values or infer content**—if a cell is empty, leave it empty.
|
||||
- Maintain all numerical, textual, and special character formatting.
|
||||
- If the table contains merged cells, indicate them clearly without altering their meaning.
|
||||
- Output the table in a structured format such as Markdown, CSV, or JSON, based on the intended use.
|
||||
""",
|
||||
}
|
||||
prompt = prompts.get(format_type, prompts["text"])
|
||||
|
||||
# Route to chosen provider
|
||||
if self.provider == "openai":
|
||||
res = self._call_openai_vision(prompt, image_base64)
|
||||
else:
|
||||
res = self._call_ollama_vision(prompt, image_base64)
|
||||
|
||||
responses.append(f"Page {idx + 1}:\n{res}")
|
||||
|
||||
# Clean up temporary files
|
||||
if preprocess and preprocessed_path.endswith(
|
||||
"_preprocessed.jpg"
|
||||
):
|
||||
try:
|
||||
os.remove(preprocessed_path)
|
||||
except OSError:
|
||||
pass
|
||||
if page_file.endswith((".png", ".jpg", ".jp2")):
|
||||
try:
|
||||
os.remove(page_file)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
final_result = "\n".join(responses)
|
||||
if format_type == "json":
|
||||
try:
|
||||
json_data = json.loads(final_result)
|
||||
return json.dumps(json_data, indent=2)
|
||||
except json.JSONDecodeError:
|
||||
return final_result
|
||||
return final_result
|
||||
else:
|
||||
# Fallback: no images found; extract raw text per page
|
||||
text_pages = self._pdf_extract_text(image_path)
|
||||
combined = []
|
||||
for i, t in enumerate(text_pages):
|
||||
combined.append(f"Page {i + 1}:\n{t}")
|
||||
return "\n".join(combined)
|
||||
|
||||
# Process non-PDF images as before.
|
||||
if preprocess:
|
||||
image_path = self._preprocess_image(image_path, language)
|
||||
|
||||
image_base64 = self._encode_image(image_path)
|
||||
|
||||
# Clean up temporary files
|
||||
if image_path.endswith(("_preprocessed.jpg", "_temp.jpg")):
|
||||
os.remove(image_path)
|
||||
|
||||
if custom_prompt and custom_prompt.strip():
|
||||
prompt = custom_prompt
|
||||
print("Using custom prompt:", prompt)
|
||||
else:
|
||||
prompts = {
|
||||
"markdown": f"""Extract all text content from this image in {language} **exactly as it appears**, without modification, summarization, or omission.
|
||||
Format the output in markdown:
|
||||
- Use headers (#, ##, ###) **only if they appear in the image**
|
||||
- Preserve original lists (-, *, numbered lists) as they are
|
||||
- Maintain all text formatting (bold, italics, underlines) exactly as seen
|
||||
- **Do not add, interpret, or restructure any content**
|
||||
""",
|
||||
"text": f"""Extract all visible text from this image in {language} **without any changes**.
|
||||
- **Do not summarize, paraphrase, or infer missing text.**
|
||||
- Retain all spacing, punctuation, and formatting exactly as in the image.
|
||||
- If text is unclear or partially visible, extract as much as possible without guessing.
|
||||
- **Include all text, even if it seems irrelevant or repeated.**
|
||||
""",
|
||||
"json": f"""Extract all text from this image in {language} and format it as JSON, **strictly preserving** the structure.
|
||||
- **Do not summarize, add, or modify any text.**
|
||||
- Maintain hierarchical sections and subsections as they appear.
|
||||
- Use keys that reflect the document's actual structure (e.g., "title", "body", "footer").
|
||||
- Include all text, even if fragmented, blurry, or unclear.
|
||||
""",
|
||||
"structured": f"""Extract all text from this image in {language}, **ensuring complete structural accuracy**:
|
||||
- Identify and format tables **without altering content**.
|
||||
- Preserve list structures (bulleted, numbered) **exactly as shown**.
|
||||
- Maintain all section headings, indents, and alignments.
|
||||
- **Do not add, infer, or restructure the content in any way.**
|
||||
""",
|
||||
"key_value": f"""Extract all key-value pairs from this image in {language} **exactly as they appear**:
|
||||
- Identify and extract labels and their corresponding values without modification.
|
||||
- Maintain the exact wording, punctuation, and order.
|
||||
- Format each pair as 'key: value' **only if clearly structured that way in the image**.
|
||||
- **Do not infer missing values or add any extra text.**
|
||||
""",
|
||||
"table": f"""Extract all tabular data from this image in {language} **exactly as it appears**, without modification, summarization, or omission.
|
||||
- **Preserve the table structure** (rows, columns, headers) as closely as possible.
|
||||
- **Do not add missing values or infer content**—if a cell is empty, leave it empty.
|
||||
- Maintain all numerical, textual, and special character formatting.
|
||||
- If the table contains merged cells, indicate them clearly without altering their meaning.
|
||||
- Output the table in a structured format such as Markdown, CSV, or JSON, based on the intended use.
|
||||
""",
|
||||
}
|
||||
prompt = prompts.get(format_type, prompts["text"])
|
||||
print("Using default prompt:", prompt) # Debug print
|
||||
|
||||
# Call chosen provider with single image
|
||||
if self.provider == "openai":
|
||||
result = self._call_openai_vision(prompt, image_base64)
|
||||
else:
|
||||
result = self._call_ollama_vision(prompt, image_base64)
|
||||
|
||||
if format_type == "json":
|
||||
try:
|
||||
json_data = json.loads(result)
|
||||
return json.dumps(json_data, indent=2)
|
||||
except json.JSONDecodeError:
|
||||
return str(result)
|
||||
|
||||
return str(result)
|
||||
except Exception as e:
|
||||
return f"Error processing image: {str(e)}"
|
||||
|
||||
def process_batch(
|
||||
self,
|
||||
input_path: str | list[str],
|
||||
format_type: str = "markdown",
|
||||
recursive: bool = False,
|
||||
preprocess: bool = True,
|
||||
custom_prompt: str | None = None,
|
||||
language: str = "en",
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Process multiple images in batch
|
||||
|
||||
Args:
|
||||
input_path: Path to directory or list of image paths
|
||||
format_type: Output format type
|
||||
recursive: Whether to search directories recursively
|
||||
preprocess: Whether to apply image preprocessing
|
||||
custom_prompt: If provided, this prompt overrides the default for each image
|
||||
language: Language code to apply language specific OCR preprocessing
|
||||
|
||||
Returns:
|
||||
Dictionary with results and statistics
|
||||
"""
|
||||
# Collect all image paths
|
||||
image_paths: list[str | Path] = []
|
||||
if isinstance(input_path, str):
|
||||
base_path = Path(input_path)
|
||||
if base_path.is_dir():
|
||||
pattern = "**/*" if recursive else "*"
|
||||
for ext in [".png", ".jpg", ".jpeg", ".pdf", ".tiff"]:
|
||||
image_paths.extend(base_path.glob(f"{pattern}{ext}"))
|
||||
else:
|
||||
image_paths = [base_path]
|
||||
else:
|
||||
image_paths = [Path(p) for p in input_path]
|
||||
|
||||
results = {}
|
||||
errors = {}
|
||||
|
||||
# Process images in parallel
|
||||
with concurrent.futures.ThreadPoolExecutor(
|
||||
max_workers=self.max_workers
|
||||
) as executor:
|
||||
future_to_path = {
|
||||
executor.submit(
|
||||
self.process_image,
|
||||
str(path),
|
||||
format_type,
|
||||
preprocess,
|
||||
custom_prompt,
|
||||
language,
|
||||
): path
|
||||
for path in image_paths
|
||||
}
|
||||
|
||||
for future in concurrent.futures.as_completed(future_to_path):
|
||||
path = future_to_path[future]
|
||||
try:
|
||||
results[str(path)] = future.result()
|
||||
except Exception as e:
|
||||
errors[str(path)] = str(e)
|
||||
# pbar.update(1)
|
||||
|
||||
return {
|
||||
"results": results,
|
||||
"errors": errors,
|
||||
"statistics": {
|
||||
"total": len(image_paths),
|
||||
"successful": len(results),
|
||||
"failed": len(errors),
|
||||
},
|
||||
}
|
||||
Reference in New Issue
Block a user